First Semester B.Sc. Degree Examination, October/November 2019

(CBCS Scheme)

Paper I - CHEMISTRY

Time: 3 Hours

[Max. Marks: 90

Instructions to Candidates:

- 1) Question paper has Two Parts Part A and Part B
- 2) Both the Parts should be answered

PART - A

- I. Answer any TEN of the following questions. Each question carries 2 marks: (10 × 2 = 20)
 - What is diagonal relationship? Give an example.
 - 2. Write the limitations of Bohr's theory.
 - 3. Sketch the radial probability distribution curves for 1S and 2S orbitals.
 - Define lattice energy. List the factors affecting it.
 - 5. Distinguish between sigma and pi bonds.
 - Write the molecular orbital configuration of N₂. Write its magnetic property.
 - 7. Between ammonia and methyl amine, which is more basic and why?
 - 8. Define the term configuration and conformation and give an example for each.
 - 9. Write any two principles of green Chemistry.
 - 10. Define
 - (a) Chromatogram and
 - (b) Retention time
 - Write the preparation of alkenes by Birch reduction.
 - 12. State Saytzeff's rule with an example.

PART - B

- II. Answer any SEVEN of the following questions. Each question carries 10 marks: (7 × 10 = 70)
 - 13. (a) Define ionization energy. How does it vary along a period and down the group? Explain.
 - (b) Calculate the bond order of the following: O_2 , O_2^* and O_2^* .
 - (c) State Fajan's rules.

(4 + 3 + 3)

- 14. (a) What are quantum numbers? Explain different quantum numbers and their significance.
 - (b) State and explain Hund's rule with an example.
 - (c) Write all the possible values of l and m when n = 3 (4 + 3 + 3)
- 15. (a) (i) Write Schrodinger equation and explain the various terms involved in it.
 - (ii) What is the significance of Ψ and Ψ^2 .
 - (b) Explain (n+l) rule with an example.
 - (c) Calculate the de-Broglie wave length of θ particle of mass $10^{-3}kg$ moving with a velocity of $10^5 m/s$. (h = 6.63×10⁻³⁴JS). (4 + 3 + 3)
- 16. (a) Draw the molecular orbital energy level diagram for NO molecule, determine its bond order and comment on its magnetic properties.
 - (b) Predict and explain the geometry of H₂O and X_cF₄ on the basis of VSEPR theory.
 - (c) Explain Sp³d² hybridization with an example. (4 + 3 +3)
- 17. (a) Construct the Born-Haber cycle for the formation of M_gO and how the lattice energy is calculated from it?
 - (b) The bond angle in Ammonia is 107°, whereas inwater 104.5°. Justify.
 - (c) Calculate the total number of lone pairs and bond pairs in CIF_3 , BrF_5 and I_3 . (4 + 3 + 3)

- 18. (a) Define hybridization and explain the hybridization in ethane molecule.
 - (b) Write a note on
 - (i) Carbocations and
 - (ii) Carbanions.
 - (c) Which of the following compounds are aromatic? Benzene, cyclohexane, pyrrole and tetrahydrofuran. Give reason. (4 + 3 + 3)
- 19. (a) Write the Newmann projection formulae of
 - (i) ethane and
 - (ii) glyceraldehyde
 - (b) Write the chair and boat conformations of cyclohexane and comment on their relative stabilities.
 - (c) Calculate the ring stain in the following molecules
 - (i) Cyclobutane
 - (ii) cyclopropane and
 - (iii) cyclohexane

(4 + 3 + 3)

- 20. (a) Write the classification of chromatographic methods based on the nature of stationary phase.
 - (b) Write the criteria for the selection of mobile phase and stationary phase in TLC and write its applications.
 - (c) Explain the green synthesis of ibuprofen by BHC-method. (4 + 3 + 3)
- 21. (a) Explain the oxymercuration and demercuration reaction of propene.
 - (b) Terminal alkynes are acidic in nature, explain with an example.
 - (c) Explain ozonolysis of alkines with suitable example and mention its significance in structural elucidation. (4 + 3 + 3)
- 22. (a) Describe the preparation of alkenes by the following methods:
 - (i) dehydration
 - (ii) dehydrohelogenation
 - (b) Explain the mechanism of chlorination of propane.
 - (c) Explain why stability of free radicals follows the order 3 > 2 > 1?

 (4 + 3 + 3)